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Abstract. Species distribution modeling (SDM) is widely used in ecology and conserva-
tion. Currently, the most available data for SDM are species presence-only records (available
through digital databases). There have been many studies comparing the performance of alter-
native algorithms for modeling presence-only data. Among these, a 2006 paper from Elith and
colleagues has been particularly influential in the field, partly because they used several novel
methods (at the time) on a global data set that included independent presence–absence records
for model evaluation. Since its publication, some of the algorithms have been further devel-
oped and new ones have emerged. In this paper, we explore patterns in predictive performance
across methods, by reanalyzing the same data set (225 species from six different regions) using
updated modeling knowledge and practices. We apply well-established methods such as gener-
alized additive models and MaxEnt, alongside others that have received attention more
recently, including regularized regressions, point-process weighted regressions, random forests,
XGBoost, support vector machines, and the ensemble modeling framework biomod. All the
methods we use include background samples (a sample of environments in the landscape) for
model fitting. We explore impacts of using weights on the presence and background points in
model fitting. We introduce new ways of evaluating models fitted to these data, using the area
under the precision-recall gain curve, and focusing on the rank of results. We find that the way
models are fitted matters. The top method was an ensemble of tuned individual models. In con-
trast, ensembles built using the biomod framework with default parameters performed no bet-
ter than single moderate performing models. Similarly, the second top performing method was
a random forest parameterized to deal with many background samples (contrasted to relatively
few presence records), which substantially outperformed other random forest implementations.
We find that, in general, nonparametric techniques with the capability of controlling for model
complexity outperformed traditional regression methods, with MaxEnt and boosted regression
trees still among the top performing models. All the data and code with working examples are
provided to make this study fully reproducible.

Key words: boosted regression trees; down sampling; ecological niche model; ensemble modeling; imbal-
anced data; independent test data; machine learning; maxent; model evaluation; point process weighting;
presence-background; random forest.

INTRODUCTION

Receiving much attention in the past few decades, cor-
relative species distribution models (SDMs) are well
known to many researchers in ecology, evolution, bio-
geography, and conservation. SDMs are used in a wide
range of theoretical and practical applications to under-
stand the relationship between species and the environ-
ment (Guisan and Thuiller 2005), and map their
geographic distribution (Franklin 2010). They often
underpin real-world management decisions such as

conservation prioritization and planning (Guisan et al.
2013, Whitehead et al. 2017). Frequently modelers have
to collate existing data rather than gathering expensive
survey-based samples (Powney and Isaac 2015, Johnston
et al. 2020), so it is of interest to know how models per-
form on the types of data widely available. In addition,
SDM predictions can vary depending on the fitted
model (Hallgren et al. 2019), which could result in sub-
stantial change in decisions made based on their predic-
tion (Muscatello et al. 2021). Consequently, there is
ongoing interest in assessing the predictive performance
of different modeling methods to understand whether
some tend to perform generally better than others. Sev-
eral studies have tested a variety of models in the past
(Elith et al. 2006, Bahn and McGill 2012, Shabani et al.
2016). However, many new modeling methods have
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emerged recently, emphasizing the necessity of an up-
to-date assessment of their general performance for
ecologists. Here we explore the performance of several
state-of-the-art modeling methods likely to be of interest
for species distribution modelers on a global data set of
225 species (Elith et al. 2020) from different taxa. Our
analysis provides a detailed report on different aspects
of the predictive performance of these models, tested on
a wide range of species, that facilitates the choice of
modeling methods for ecologists.
There are many aspects to be considered when build-

ing an SDM, including appropriateness of underlying
model assumptions, choice of modeling algorithms, tun-
ing of model parameters and complexity, selection of
background data, and availability of species data and
environmental predictors (Ara�ujo et al. 2019). These
considerations can substantially impact predictions.
Among these aspects, the choice of modeling algorithm
is often prominent because there are many techniques
available. Methods vary in predictive success (Pearson
et al. 2006, Thuiller et al. 2009), so there is ongoing
interest in identifying general trends in predictive perfor-
mance across methods.
Of previous studies exploring patterns in the predic-

tive performance of modeling algorithms (Segurado and
Araujo 2004, Prasad et al. 2006, Meynard and Quinn
2007, Shabani et al. 2016), the study by Elith et al.
(2006) has been highly influential in the field and is often
quoted to justify the choice of modeling technique. We
hereafter refer to that study as the 2006 NCEAS models,
to emphasize the contribution of many modelers and to
acknowledge the support of the National Centre for
Ecological Analysis and Synthesis (NCEAS). Based on
modeling methods of the early 2000s, it provided a
detailed comparison of traditional and newer modeling
methods (16 modeling methods) on several data sets of
different taxa (226 species of plants, mammals, reptiles,
and birds) from six different geographic regions. The
performance of models fitted to presence-only species
records was evaluated using independently collected
presence–absence data sets.
Modeling methods have developed considerably since

the 2006 NCEAS analysis, and there is now also much
more attention to reproducibility of studies (Fidler et al.
2017). Furthermore, a range of different software pack-
ages were used in 2006 (some with manual steps and
now outdated software) and several modelers were
involved in fitting models. Therefore, there is substantial
scope to build on the 2006 NCEAS study, using updated
best practices for existing techniques, new modeling
approaches and reproducible methods, and that is the
aim of the present paper. Since the NCEAS data are
now publicly released (Elith et al. 2020), our study will
act as a new, reproducible, benchmark that expands our
knowledge of SDM performance.
In choosing new modeling methods to include, we

focused on methods that might aid model selection and
model fitting. For instance, regularization techniques

(Friedman et al. 2010) can improve the predictive perfor-
mance of models by penalizing and shrinking regression
coefficients, leading to a substantial reduction or com-
plete removal of unimportant variables (James et al.
2013). Regularization methods provide a form of model
selection that is known to solve common issues in other
traditional model selection approaches like stepwise or
best subset selection based on information criteria
(Marra and Wood 2011). Some methods use weights
across the response data, and point process weighting
has been suggested by Fithian and Hastie (2013) as the
proper way of fitting regression models for presence-
only data. It has been reported to improve model
performance (El-Gabbas and Dormann 2017). Model
averaging or ensemble modeling is often considered to
have higher predictive power and to be more reliable
than single models (Ara�ujo and New 2007, Marmion
et al. 2009), and is popular among species-distribution
modelers (Hao et al. 2019). Other methods not tested by
the 2006 NCEAS modelers and that we assess here
include Random Forests (RF), now a widely used
method for modeling species distributions (Zhang et al.
2019), support vector machines (SVM), and extreme
gradient boosting (XGBoost).
We will show briefly how the implemented models

work, highlight their main differences, and provide
example code showing how to fit them on species
presence-only data. We also introduce new ways of com-
paring many modeling methods across several species
data set via their performance rank rather than absolute
mean, and assess statistical significance of the results.
All the modeling code and species data are provided to
serve as a baseline for future studies. As a comprehensive
analysis of the performance of predictive models, our
results are relevant to many researchers in ecology, evo-
lution, and biogeography.

MATERIALS AND METHODS

Data for modeling and evaluation

The species data we used for model fitting and evalua-
tion is the data set assembled and used by the 2006
NCEAS modelers, excluding one species only repre-
sented by two records in the training data set. It thus
represents 225 species from six regions of the world:
birds and plants of the Australian Wet Tropics (AWT);
birds of Ontario, Canada (CAN); plants, birds, mam-
mals and reptiles of northeast New South Wales, Aus-
tralia (NSW); plants of New Zealand (NZ); plants from
five countries of South America (SA); and plants of
Switzerland (SWI). The species data are detailed in Elith
et al. (2020). They are provided in two independent data
sets: (1) a set of presence-only data, generally from
opportunistic records, ranging from 5 to 5,822 presence
sites per species, and hereafter called “training data” and
(2) a set of presence–absence data, gathered in designed
surveys in each region, ranging from 102 (AWT) to
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19,120 (NZ) survey sites, and hereafter called “testing
data.”
The environmental predictors were collated by the 2006

NCEAS working group, aiming to represent ecologically
relevant factors for the species of each region, with 11–13
candidate variables per region. These predictor data are a
set of continuous (e.g., temperature) and categorical (e.g.,
soil classes) raster files provided in spatial resolutions vary-
ing from 100 to 1,000 m depending on the region (see
Appendix S1: Table S1). The 2006 NCEAS modelers vari-
ously used all candidate variables or subsets of them,
depending on their preferred approach to modeling as
influenced by their experience and restrictions imposed by
the modeling method (e.g., some could not use categorical
variables). Their choices are documented in their paper.
Our study excluded variables with a pairwise Pearson cor-
relation higher than 0.8, from the candidate data sets. Files
containing both species and environmental data, exactly
as used by the 2006 NCEAS group, are now available as
CSV files on Open Science Framework (OSF) and also in
an R package; environmental raster data are available on
OSF. See all details of availability and metadata in Elith
et al. (2020).

Selecting background data

Despite recent trends toward improvement of the
quality of species data (Ara�ujo et al. 2019), the vast
majority of available data are still presence-only data
available on online digital databases (Anderson 2012,
Johnston et al. 2020). Presence-only data consist of the

locations of observed species presence and lack informa-
tion about locations where a species does not occur, i.e.,
absence (Renner et al. 2015). Several strategies have been
used to allow models to be fitted to such data. A com-
mon technique is to sample a relatively large number of
random samples from the landscape, termed background
or sometimes pseudo-absence samples (Franklin 2010,
Hefley and Hooten 2016, Ara�ujo et al. 2019). Following
the methods of the 2006 NCEAS study, and consistent
with recommendations of recent statistical papers (Ren-
ner et al. 2015), we sampled background points irrespec-
tive of the location of species records, allowing that a
presence and a background sample may occur at the
same site. We sampled the background randomly despite
the fact that some of our data sets may have spatial bias
(see Phillips et al. [2009] for more information), aiming
to reproduce the general approach of the 2006 NCEAS
study.
The NCEAS group used a sample of 10,000 back-

ground points in each region, but recent research has
explained why more may be necessary (Warton and
Shepherd 2010). The number of background points
should be large enough to comprehensively sample (and
hence represent) all environments in the region of inter-
est. Having a very large number of background samples,
however, increases computational burden. Here, we used
an incremental approach to choose the number of back-
ground points for our modeling (Fig. 1). We ran prelimi-
nary analyses on a few species using MaxEnt (v3.4.1;
Phillips et al. 2006) to assess the influence of the number
of background samples on predictive performance, using

FIG. 1. Number of background points and the area under the receiver operating characteristic curve (AUCROC) of the MaxEnt
model for a widespread species in AWT. Bars show the average computation time in seconds. The red horizontal dashed line indi-
cates the AUCROC (0.775) obtained with a model fitted using all available cells as background samples. Box plot components are
the median (mid line), the first and third quartiles (box hinges), and extend from the hinges by 1.5 * inter-quartile range (whiskers)
of the AUCROC values.
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area under the receiver operating characteristic curve
(AUCROC) calculated on the testing data set. We
assumed that when the number of background points
becomes sufficiently large, and it properly represents the
variation in the environmental covariates, model predic-
tive performance would converge to a stable value. Max-
Ent is a good candidate for this analysis as it is
developed to model presence-background data, it is not
a stochastic model (i.e., results do not vary each time it
is run), and it is fast computationally. Two species from
each region (one widespread and one with limited range)
were selected for this purpose. We fitted models to 25
different sample sizes of background points (100–
100,000, Fig. 1), with each sampling-then-modeling
repeated 10 times to account for the variability in the
selected background samples.
We present the outcome of these tests here, since it is

central to the methods. Fig. 1 shows the change in evalua-
tion metric (AUCROC) and computation time for different
numbers of background points for a species in AWT
region, chosen for its representative AUCROC values. The
variation of AUCROC with background sample size is typ-
ical of results across species and regions. Based on these,
we chose to use 50,000 background points in our model-
ing, because the variation in evaluation gets close to the
AUCROC produced by using all cells in the landscape as
background (the “gold standard,” represented by a hori-
zontal red dashed line). We acknowledge that the actual
choice of 50,000 rather than say 35,000 or 70,000 is some-
what arbitrary, but it addresses the general issue of using
enough background points. The final background sample
for each region is provided in Data S1.

Modeling methods

We conducted all analyses in the R programming lan-
guage (R Core Team 2020) and provide code and exam-
ples useful for new researchers. The free and open-
source R programming language is commonly used
among ecologists and SDM modelers, and provides a
platform to keep together the whole modeling workflow
and analysis of SDM outputs. We fitted models using
several common modeling methods implemented in R,
or able to be run through R. Where possible, for those
methods used by the 2006 NCEAS modelers we use the
same R packages as used by them (Table 1), or other-
wise choose a current, popular alternative. We deliber-
ately focused on methods that model species one at a
time, not using any other species or community data to
fit the models (in contrast see Norberg et al. 2019). Our
chosen models include both traditional parametric and
semi-parametric regression models and newer machine-
learning methods (e.g., tree-based models and support
vector machine). Many of these have been extensively
used in SDM. In general, these models differ in the way
they determine the fitted function (on a spectrum from
largely user-defined to largely data-driven), whether they
include interactions, and the way they handle model

complexity and overfitting (i.e., how they address the
bias-variance trade-off) (Hastie et al. 2009, Merow et al.
2014). All models use background samples in model fit-
ting (i.e., none use the presence data only, as for instance
in methods like BIOCLIM; Booth et al. 2014). For ease
of discussion, we divide the models into three groups: re-
gression, tree-based, and other methods.
Our aims were (1) to repeat some of the original meth-

ods used by the 2006 NCEAS modelers to test the gen-
eral reproducibility of their results, (2) to add other
methods likely to be of interest to distribution modelers
and suited to these amounts of presence-only data, and
(3) to provide code as a baseline for future studies. Over-
all, 13 modeling methods were used (Table 1), but some
were implemented with more than one variant of model
fitting, resulting in 21 approaches (Table 2). These mod-
els are described briefly in this section, followed by
details of our choices of settings for fitting models. The
details of models and how to fit them in R can be found
in Appendix S2 and Data S1. We have made our model-
ing approach explicit so that others wishing to test addi-
tional methods can build on this basis.

Regression-based models.—Among the regression
approaches, Generalized Linear Models (GLMs) and
Generalized Additive Models (GAMs) are commonly
used in species distribution modeling. GLMs use para-
metric functions such as linear or higher-degree

TABLE 1. Modeling methods and their implementation in R
packages.

Method Description R package

GAM generalized additive
model

mgcv

GLM generalized linear model stats::glm and
gam::step.Gam

Lasso regularized regression
(L1 regularization)

glmnet

Ridge
regression

regularized regression
(L2 regularization)

glmnet

MARS multivariate adaptive
regression spline

earth

MaxEnt maximum entropy dismo::maxent
(needs
maxent.jar)

MaxNet maximum entropy new
implementation

maxnet

BRT/GBM boosted regression trees dismo::gbm.step
(relies on the gbm
package)

cforest unbiased conditional
inference forest

party::cforest

RF random forest randomForest
XGBoost extreme gradient

boosting
xgboost

biomod ensemble framework
with up to 10 different
models

biomod2

SVM support vector machine e1071
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TABLE 2. A summary of model implementation settings.

Method and weights Parameters Values Description

GAM
DW method REML smoothing parameter estimation method

GLM unweighted
None direction both step-selection direction (forward and backward)

based on AIC
GLM
DW direction both step-selection direction (forward and backward)

based on AIC
IWLR-GLM
IWLR same as GLM same as GLM same as GLM

IWLR-GAM
IWLR same as GAM same as GLM same as GLM

Lasso†
DW alpha 1 the lasso penalty; linear and quadratic terms

allowed
Ridge regression†
DW alpha 0 the ridge penalty; linear and quadratic terms

allowed
MARS unweighted
None nprune 2–20 number of terms

degree 1 degree of interaction (1 means no interaction
allowed)

MaxEnt
NA args no threshold auto select feature and exclude threshold feature

MaxEnt tuned
NA betamultiplier 0.5, 1, 2, 3, 4 regularization multiplier

feature types L, LQ, H, LQH, LQHP transformations of input covariates: L, linear; Q,
quadratic; H, hinge; P, product

BRT
DW tree.complexity 1 or 5 the complexity of individual trees

learning.rate 0.001 shrinkage or the weight applied to individual trees
bag.fraction 0.75 proportion of observations sampled to train each

tree
n.folds 5 number of cross-validation folds

cforest
None mtry sqrt(n. covars) number of variables randomly selected at each

split
cforest weighted
DW mtry sqrt(n. covars) number of variables randomly selected at each

split
RF
None mtry sqrt(n. covars) number of variables randomly selected at each

split
RF down-sampled
None mtry sqrt(n. covars) number of variables randomly selected at each

split
sampsize n. presences number of bootstrap samples taken from each

class
ntrees 1,000 number of trees
replace TRUE samples are taken by replacement

XGBoost
None nrounds from 500 to 15,000

by 500
number of iterations (trees)

eta 0.001 learning rate or shrinkage parameter
max_depth 5 maximum number of terminal nodes allowed
subsample 0.75 proportion of observations sampled to train each

tree
gamma 0 minimum loss reduction required to make a

further partition
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polynomials to model the relationship between the
response and predictors. GAMs use nonparametric
smooth functions to allow nonlinearity in the fitted
functions.
There are several options for fitting GLMs, with mod-

ern regularization methods often performing well
(Reineking 2006). Lasso and ridge regression (L1 and
L2 regularization, respectively) penalize the coefficients
and shrink them toward zero (Friedman et al. 2010).
This shrinkage reduces the variance of the regression
model (i.e., its stability over different data samples),
hence the fitted model may generalize better. Unlike
ridge regression, lasso can reduce the coefficient of vari-
ables to exactly zero, de facto excluding those variables
and resulting in sparser models (Hastie et al. 2009). A
recent comparison showed penalized regression to per-
form as well as MaxEnt (Gast�on and Garc�ıa-Vi~nas
2011). Since MaxEnt is often regarded as having strong
predictive performance, this suggests these regulariza-
tion approaches may be useful for predicting species dis-
tributions.
Multivariate Adaptive Regression Splines (MARS) is

a flexible nonparametric regression similar to GAMs
but using piecewise linear basis functions instead of
smooth functions (Elith and Leathwick 2007). The com-
plexity of the model varies with how many of these piece-
wise linear functions are fitted across each predictor
variable, and that is determined with fast, inbuilt internal
cross-validation methods. MARS fits interactions if that
option is allowed (Leathwick et al. 2006); here we did
not test that option.
MaxEnt is a popular modeling method for predicting

species distributions, specifically developed for modeling
presence-only species data (Phillips et al. 2006). We
include it in the “regression-based” section due to its

known links to regression methods, and particularly point
process approaches (Renner and Warton 2013, Renner
et al. 2015). MaxEnt has the flexibility to fit more or less
complex models depending on the number of species
records and user-defined settings. Complexity is con-
trolled by use of transformed features of the predictor
covariates (including linear, quadratic, product, hinge, and
threshold) and also by choice of regularization settings
(Elith et al. 2011). MaxNet is a new, alternative imple-
mentation of MaxEnt (Phillips et al. 2017), motivated by
new understandings of the link between MaxEnt and
Poisson point process models (Renner and Warton 2013).
It uses infinitely-weighted logistic regression (Fithian and
Hastie 2013) to fit the MaxEnt model and it is developed
as an R package with no need for external software. Both
MaxEnt and MaxNet use L1 regularization (Elith et al.
2011), similar to Lasso, but with potentially more flexible
fitted functions (via transformed features).

Tree-based models.—Classification and regression trees
are nonlinear (and nonparametric) models that recur-
sively partition (“split”) the predictor space into sections
with similar values of the response variable (Elith 2019).
This is a conceptually simple method that has several
advantages such as reliably selecting influential covari-
ates and allowing automatic fitting of interactions
between covariates (Strobl et al. 2009). Single trees are
high-variance methods, changing with each training data
set. They are also poorly suited to estimating smooth
functions. This limits their predictive performance, but
they are commonly used as the base learner in ensembles
of trees, often highly effective for prediction (Hastie
et al. 2009). Hence, here we test ensembles rather than
single trees. Tree-based models are often categorized as
machine-learning models.

TABLE 2. Continued.

Method and weights Parameters Values Description

colsample_bytree 0.8 proportion of variables randomly selected at each
split

min_child_weight 1 minimum number of samples at each terminal
node

biomod
None 50,000 background samples ANN, GLM, GAM, MARS, FDA, CTA, BRT,

RF and MaxEnt models
Ensemble rescale and average of individual modes

implemented here: GAM, Lasso, MaxEnt, BRT
and RF down-sampled

SVM
None kernel radial the radial basis kernel

SVM weighted
DW kernel radial the radial basis kernel

Notes: More details are provided in the Appendix S2 with example code (and complete code to reproduce our analysis in Data
S1). The “Method and weights” column shows the method in normal font followed by weights in italic font. The possible weights
are down-weighting (DW), Poisson process weighting (IWLR), or no weighting. NA indicates the model does not accept weights.
The “parameters” column shows model arguments that are selected in the modeling process. The “values” column shows the value
or ranges of values selected for model fitting and tuning. AIC, Akaike information criterion.
†Lasso and ridge regression are here used with GLMs.
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In Boosted Regression Trees (BRT) hundreds to thou-
sands of regression trees are selected into an ensemble in
a forward stagewise fashion. At each step of model fit-
ting, the algorithm focuses on the weakest parts of the
model built so far (the observations that so far are not
predicted accurately) by fitting each new tree to the
residuals of the previously fitted trees (Elith et al. 2008).
Here, we use an implementation of BRT that has been
widely used in SDMs (Table 1) and that constructs the
models using stochastic gradient boosting (Friedman
2002).
The XGBoost algorithm (Chen and Guestrin 2016) is

a new and slightly different form of gradient boosting
with several features intended to improve its scalability
and control over-fitting (Prasad 2018). Despite the suc-
cessful usage of XGBoost in other disciplines (Chen and
Guestrin 2016), the application of XGBoost in species
distribution modeling is rare (examples in ecology
include Doren and Horton [2018], Huang et al. [2018].
and Herdter [2019]). This might be due to the fact that
XGBoost is relatively new and that, as it is highly flexi-
ble, it includes many hyperparameters that need careful
tuning (Mu~noz-Mas et al. 2019).
Random Forests (RF) have become popular for

SDMs. This modeling method approaches ensemble cre-
ation differently to BRT, not using a stagewise approach
but instead using bagging (bootstrap aggregation) to
combine many trees. Bagging involves taking many
bootstrap samples from the training data, fitting a tree
to each sample and making an average prediction over
all fitted trees (Strobl et al. 2009). Unique to this
method, RF uses only a random subset of the predictor
variables (parameter mtry) on each split while growing
each tree. This creates decorrelated trees and reduces the
variance of the final model, with consequent gains for
predictive performance (Hastie et al. 2009). An advan-
tage of RF compared to similar methods such as BRT
and XGBoost, is that it is not very sensitive to tuning
the model parameters (Strobl et al. 2009, Freeman et al.
2016). These characteristics have made RF a relatively
common SDM approach (Mi et al. 2017, Harris et al.
2018).
Conditional Inference Forest (cforest) is a variant of

RF that uses a different form of decision trees called
ctree (Hothorn et al. 2006). This method was originally
developed to deal with known problems in common
splitting methods used in recursive binary partitioning,
particularly, that there is a selection bias toward predic-
tor variables with many possible splits or with missing
values. In contrast to RF, cforest does not grow trees to
maximum size and instead applies a stopping criterion.
The cforest model also uses subsampling without
replacement instead of bootstrap sampling to calculate
variable importance in an unbiased way (Hothorn et al.
2006, Strobl et al. 2008). The process of fitting ctrees is
costly and, as a result, creating ensembles of many ctrees
in cforest is computationally expensive.

Other models.—Support Vector Machine (SVM) is a
nonparametric machine-learning technique for regres-
sion and classification problems that has been used for
modeling species distributions (Guo et al. 2005, Drake
et al. 2006, Ashraf et al. 2017). SVMs work by defining
linear hyperplanes that best separate different classes in
the data. Similar to linear regression models, SVM can
use nonlinear forms of the predictor variables for
increased flexibility. This is done through a kernel func-
tion (e.g., polynomial or radial basis; Hastie et al. 2009:
chapter 12).
Model averaging is a popular technique for reducing

the uncertainty of model predictions (Dormann et al.
2018). For SDMs, it has become popular to average
across predictions from different methods, based on the
idea that prediction uncertainty due to the choice of
method is decreased (Ara�ujo and New 2007). The pack-
age biomod is specifically written for modeling species dis-
tributions (Thuiller et al. 2009), building ensembles across
several modeling methods. It includes 10 algorithms,
some of them used in our study (including GAM, GLM,
BRT, RF, and MaxEnt), and combines the prediction of
these models (e.g., by weighted averaging of the predic-
tions). The biomod model has become a popular model-
ing approach since the 2006 NCEAS study, with
widespread use but narrower dedicated exploration of its
predictive performance (Hao et al. 2019).
In addition to using biomod, we averaged several

models to build our own “ensemble” model. We selected
the component models before models were fitted and
evaluated, and used no knowledge of the testing data set
to select them. Given evidence in the tree ensemble liter-
ature that ensembles work best when the component
models are not highly correlated (Elith 2019), we chose
for our self-selected ensemble a set of models with a
breadth of fitted functions and model fitting approaches.
We targeted methods we expected (based on our
experience) to do well. The chosen models were Lasso,
GAM, MaxEnt, BRT, and one of the RF variants
(down-sampled; explained in the next section). Their
predictions were all rescaled between 0 and 1 and their
(unweighted) average used to build the ensemble model.

Model fitting and tuning, including weights

Model performance will reflect decisions made for
model fitting and tuning, so we specify and justify our
choices here (and see Table 2). This is an aspect of species
distribution modeling for which different users hold dif-
ferent attitudes: some prefer using software defaults,
whereas others emphasize careful model tuning. In the
2006 NCEAS modeling, the authors aimed to optimize
the performance of methods by having researchers experi-
enced with each approach choosing model settings and
other aspects of modeling the data (e.g., choice of vari-
ables). Predictions from alternative feature class settings
were produced by the author of MaxEnt, which was
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relatively new at the time and at that stage had no hinge
features (Elith et al. 2006, Phillips and Dud�ık 2008). Also,
MARS was applied with and without interactions
allowed. The 2006 NCEAS group did not allow access to
the test species data at the model fitting stage, so all mod-
elers chose settings “blind” to performance on the test set.
Regarding the shape of fitted relationships, parametric

statistical models are often supplied with user-specified
functions (e.g., linear or quadratic), and, among these,
those that best fit the data are used to represent the
unknown true structure of the data. Typically in ecology,
the realized relationships would not be expected to fol-
low strict functional shapes and assumptions (e.g., addi-
tive, linear, or stepwise; Austin and Meyers 1996). On
the other hand, nonparametric models allow fitting very
complex functions, which can easily over-fit to the train-
ing data and, as a result, perform poorly on independent
data sets (Merow et al. 2014). There is ongoing interest
in avoiding overfitting by considering the bias-variance
trade-off in model fitting (Hastie et al. 2009). Here we
tuned several models to control over-fitting, with tuning
based on the presence-background training data. This
was achieved through cross-validation for some methods
(BRT, MaxEnt tuned, MARS unweighted, XGBoost,
ridge regression, and Lasso; Table 2), and AIC for GLM
(and GLM unweighted). We allowed both linear and
quadratic terms in GLMs (GLM, GLM unweighted,
IWLR-GLM, Lasso, and ridge regression). We explain
them in more detail below. The biomod models were fit-
ted using the package defaults, since that is the most com-
mon way that biomod is used (Hao et al. 2019).
Since the authors of this study are not equally experi-

enced in all methods, we used both training and testing
data for one species (species nsw09, a diurnal bird spe-
cies from NSW) to explore the nuances of parameter set-
tings of algorithms. This was simply done to understand
the methods. Once we had a grasp on that all species
were modeled using only species presence-background
data, with specific tuning and model fitting per species
estimated on the presence-background data, as
described above. Covariates were normalized to have a
mean of zero and standard deviation of one for all mod-
els (either manually, or internally in the functions that
implement methods, e.g., for Lasso, ridge regression,
MaxEnt, and MaxEnt tuned). The model fitting and
tuning parameters of the models are summarized in
Table 2. More detail on each model’s settings and the
versions of all software is presented in the supplemen-
tary materials (Appendix S1), along with coding exam-
ples on one species in R (Appendix S2; with complete
code provided in Data S1).
Modeling presence data requires using a large number

of background points, much larger than the number of
presences. So, the training sample usually has a very
small ratio of presence to background points. For a vari-
ety of reasons (e.g., producing very small predicted val-
ues) some users suggest weighting the records to balance
their contribution (King and Zeng 2001, Guisan et al.

2017). The NCEAS 2006 study applied a weighting
approach by which the background points were down-
weighted to have a total (summed) weight equal to the
total weight of the presences. This weighting strategy is
viewed as statistically na€ıve (Renner et al. 2015), thus
other well motivated weighting schemes are also imple-
mented here. In addition to down-weighting, we applied
the weighting scheme proposed by Fithian and Hastie
(2013) to approximate an inhomogeneous Poisson pro-
cess (IPP) by a logistic GLM. This is done by the so
called “infinitely weighted logistic regression” (IWLR)
method that gives a very large weight to the background
samples. The statistical link of IWLR to IPPs provides a
sound background for implementing weighting, as the
IPP is recently identified as the proper way to model
presence-only data (Warton and Shepherd 2010; Fithian
and Hastie 2013). We implemented this weighting on
GLM and GAM models and called them IWLR-GLM
and IWLR-GAM, respectively.
For this study, our initial intention was to reproduce

the NCEAS 2006 down-weighting approach, and apply
it to all the regression models. We applied it to GLM,
Lasso, ridge regression, GAM, BRT, and SVM
weighted. (Table 2). We include variations for GLM and
MARS. We realized that weighting impacts the GLM
discrimination result, so we used both weighted and
unweighted implementations. For MARS, we could not
apply weights because they caused an error during
model fitting for many species. This could be an issue
with the current versions of the R package we used,
earth (v4.7.0). We use no weights in biomod, since that is
the package default (v3.3-7.1).
Finally, we implemented more than one approach for

some models. For instance, we used cross-validation on
presence-background training data to tune the regular-
ization multiplier and feature types in MaxEnt and
called this version MaxEnt-tuned (Table 2). RF is
known to be sensitive to low ratios of presence and
background, as used here (we discuss this in New insights
to model fitting). We used down-sampling (Chen et al.
2004) to account for this issue. In RF down-sampled
(Table 2), we fitted each tree with a bootstrap sample of
presences and the same number of background points
(Valavi et al. 2021). The equivalent of this approach can
be applied to cforest by weighting the presence and
background points (i.e., samples for fitting each tree are
taken in proportion to the weights of the observations;
as implemented in the version of the party package
v1.3-1 at the time of this analysis), we call this other
implementation cforest weighted. We also applied an
equivalent approach to SVM, by weighting the presence
and background points (SVM weighted; also discussed
in New insights to model fitting).

Model evaluation

The NCEAS dataset includes independently collected
presence–absence data available for evaluation, as
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detailed in Elith et al. (2020). We used three threshold-
independent measures of predictive performance: (1)
area under the receiver operating characteristic curve
(AUCROC); (2) area under the precision-recall gain curve
(AUCPRG); and (3) Pearson correlation between the pre-
dicted likelihood of presence and the presence–absence
testing data (COR). We used these three evaluation met-
rics to cover different aspects of the modeling perfor-
mance. For different ecological applications, different
aspects of performance are more or less relevant, and
therefore having a range of metrics is more informative
about the wider applicability of the methods. Even
though it is common in SDM evaluations to threshold
predictions and test those with a metric relevant to bin-
ary predictions, we chose not to do that here for the
main analysis. We had two reasons. First, we have pres-
ence–absence data available for predicting to, and evalu-
ating against, supporting metrics such as the ones we
have chosen. Second, there is growing evidence that
thresholding is usually not required, and has negative
impacts on the information content of the predictions
(Calabrese et al. 2014, Lawson et al. 2014, Guillera-
Arroita et al. 2015). However, since providing such met-
rics, e.g., the True Skill Statistic (TSS; Allouche et al.
2006) makes the results more directly comparable with
other published studies such as Barbet-Massin et al.
2012, we also estimated TSS and present those methods
and results in Appendix S1. We avoided using metrics
that only use presence records for model evaluation
(e.g., Boyce index; Hirzel et al. 2006) as they are specifi-
cally designed for evaluating performance when absence
data are unavailable. Absence records bring important
information, so our chosen metrics are relevant to those.
AUCROC is a widely used statistic in species distribu-

tion modeling. It assesses the ability of models to dis-
criminate presence from absence sites. AUCROC is
calculated considering “1 – specificity” (the proportion
of wrongly predicted absences or false positive rate) with
respect to “sensitivity” (the proportion of correctly pre-
dicted presences or true positive rate, also known as “re-
call”), across many thresholds that can be used to
classify the output probability into 0 and 1 (Pearce and
Ferrier 2000). AUCROC ranges from 0 to 1, with 1 show-
ing perfect discrimination and 0.5 indicating no better
discrimination than a random classification. Values <0.5
are generally considered worse than random classifica-
tion, though it is worth noting that 0.5 is only the aver-
age estimated AUCROC of an uninformative model, and
errors around this can be large, particularly if samples
are small (Raes and ter Steege 2007).
The ROC curve includes the number of true absences

in its calculation. In ecology, there are cases where mod-
elers might be more interested in focusing on accurate
prediction of the presences, e.g., when the costs of dis-
tinct error types are different (Franklin 2010), such as in
the application of SDMs in conservation prioritization
(Elith and Leathwick 2009). Area under the precision-
recall curve (AUCPR) is another discrimination metric,

commonly applied in machine-learning when the empha-
sis is not on the true negative rate (Hughes-Oliver 2018).
The focus is on the predicted presences, whether they
capture the true presences and do not include false posi-
tives. This is a common technique to rank the predictive
performance of modeling methods in machine-learning
literature. Like AUCROC, AUCPR provides a single mea-
sure of performance across all possible threshold values.
AUCPR is calculated considering “precision” (or positive
predictive value; the proportion of presence predictions
that are true species presences) with respect to “recall”
(sensitivity; Sofaer et al. 2019). AUCPR is often preferred
to AUCROC where the number of negatives (absences) is
much larger than positives (presences; Flach and Kull
2015, Hughes-Oliver 2018). Recent studies have recom-
mended using AUCPR for evaluating SDMs for rare spe-
cies, i.e., species with low prevalence (Johnson et al. 2012
and Sofaer et al. 2019).
Unlike the ROC curve that has a fixed baseline of 0.5,

the baseline in the precision-recall curve depends on the
prevalence in the testing data (Saito and Rehmsmeier
2015). This makes it difficult to compare directly the
AUCPR between species. Several corrections have been
suggested in the machine-learning literature to deal with
this characteristic (Boyd et al. 2012, Flach and Kull
2015). Flach and Kull (2015) propose to plot PR curves
in a new coordinate system, and call the new plot
precision-recall gain (PRG) curves. Positive AUCPRG

values indicate discrimination better than random, with
AUCPRG of 1 indicating perfect discrimination. Negative
values suggest predictions worse than random. In this
study we estimated AUCPRG.
In our evaluation, we avoided most measures of model

calibration. Models fitted on presence-only data (with
background samples) have no information about preva-
lence of the species and thus cannot estimate probability
of occurrence, except under strong parametric assump-
tions about the structure of the true probability of pres-
ence (Ward et al. 2009, Hastie and Fithian 2013, Phillips
and Elith 2013). These assumptions are likely violated
with real-world data (Yackulic et al. 2013, Guillera-
Arroita et al. 2015). Calibration, the agreement between
predicted probabilities of occurrence and observation of
presence and absence, is usually a concept only applied
to models fitted to presence–absence data (Pearce and
Ferrier 2000). However, in some instances it is relevant
to ask whether a presence-background model is as well
calibrated as it could be, on the proviso that it is under-
stood that without knowledge of prevalence it cannot be
calibrated in any absolute sense (Phillips and Elith
2010). In this study, we estimated COR, which gives
information beyond that in purely rank-based discrimi-
nation measures, as it assesses the difference between the
values of the prediction and the observations (0s and 1s;
Elith et al. 2006), thus providing insight into how well
predictions are calibrated in relative terms. As it takes
into account the actual prediction values, COR reports
some aspects of calibration (Phillips and Elith 2010). A
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model that performs well on AUCROC but poorly on
COR is likely to be poorly calibrated, even in relative
terms. While we recognize that we could further test the
calibration of these models with methods such as those
based on logistic regression (Cox 1958, Pearce and Fer-
rier 2000), we have not pursued that aspect of evaluation
since predictions based on presence-only species data are
not expected to be well calibrated. We provide predic-
tions from all our models so, if readers are interested,
other evaluation measures can be estimated (see Sec-
tion 11 in Appendix S1).

Statistical comparison of models

To check if the differences in model performance
across methods are not due to chance, we applied non-
parametric statistical tests known to be suitable for sta-
tistical comparison of predictive models over multiple
data sets (Dem�sar 2006, Garc�ıa and Herrera 2008). The
nonparametric tests require fewer assumptions than
their parametric counterparts and they are safer options
for statistical comparison of model performance
(Dem�sar 2006, Garc�ıa et al. 2010).
We used Friedman’s Aligned Rank test (Garc�ıa et al.

2010) to assess the statistical significance of differences
in model performance, based on the evaluation metrics,
i.e., AUCROC, AUCPRG, and COR. This test determines,
for each metric, whether there is any statistical difference
in performance among all of the models, but does not
provide any information about the pairwise differences
(Garc�ıa and Herrera 2008, Garc�ıa et al. 2010). After
that, we applied the Friedman’s Aligned Rank post hoc
test, to conduct pairwise comparisons of the same per-
formance metrics as above. The P values obtained from
this post hoc test were adjusted using the Shaffer correc-
tion (Shaffer 1986) to take into account the effect of
multiple comparisons (see Garc�ıa and Herrera 2008).
The adjusted P values provide information on whether
the statistical hypothesis of “equal performance” of pairs
of models is significant or not, and it also shows how
significant the result is: the lower the P value, the stron-
ger evidence against the null hypothesis of equal perfor-
mance (Garc�ıa et al. 2010). We used the R package
scmamp v0.2.55 (Calvo and Santaf�e 2016) to calculate
these statistics.
Similar to the analysis by NCEAS 2006, to capture

the variation in evaluation metrics for graphical presen-
tation, we used a Generalized Linear Mixed Model
(GLMM; Bolker et al. 2009) with the metrics (AUCROC

and COR) as the response variable and the modeling
method as the fixed effect. The species identity and the
interaction between the methods and regions were fit-
ted as random effects, the interaction term allowing for
differing performance of methods across regions. Anal-
yses were performed in the Bayesian framework of
inference, using JAGS v4.3.0 (Plummer 2003) called
from R.

RESULTS AND DISCUSSION

We assessed the predictive performance of 21 model-
ing approaches (Table 2) fitted to presence-only species
records with 50,000 randomly selected background
points, testing them on independently collected presence–
absence data. The NCEAS 2006 study analyzed their
results from several viewpoints including assessing pat-
terns of model performance per species and the impacts
of prevalence, environmental and geographic distances
between sites on predictive performance. However, in this
study we concentrate on the overall predictive perfor-
mance of modeling methods by comparing some of the
previous models with newly emerged ones, and expanding
the evaluation with the new precision-recall statistics.
With the training and testing data sets now freely avail-
able (Elith et al. 2020), we have also provided sufficient
code that our modeling can be repeated by others, for
future benchmarks in other explorations (Appendix S2
and Data S1).

Overview of performance

The overall distribution of AUCROC values across
methods and species follows closely that of the 2006
study (see Appendix S1: Fig. S6, and Elith et al. [2006:
Fig. 2] for comparison). This is in line with the idea
that, for a certain data set (having the same sets of spe-
cies, observations, and covariates), there is an achiev-
able bound on predictive accuracy (Garc�ıa et al. 2010).
This could be due to species characteristics (such as
taxa and trophic mode), study extent, number of pres-
ence records, lack of using proximal environmental pre-
dictors or a combination of these factors (Soininen and
Luoto 2014). The range of AUCROC was from 0.139 to
0.996 (0.07 to 0.97 for the 2006 NCEAS study) with a
mean 0.709 and median 0.715 for all methods and spe-
cies. About 42% of the models and species had
AUCROC of 0.75 or higher (compared to 40% for the
2006 NCEAS study) and 54% of them were 0.7 or
higher. Nine percent of the models (spread over 58 spe-
cies in all regions except SWI) had AUCROC below 0.5,
indicating predictions worse than random. Judging by
AUCPRG, 86% of the models and species had a predic-
tive performance better than random (positive
AUCPRG), see later.
Fig. 2 gives the first overview of patterns of predictive

performance of the models across all 225 species. The
concentric rings indicate methods, and the outer his-
togram bars indicate numbers of training presence
records. Some species are inherently harder to predict,
and the AUCROC for all modeling methods for those
species is low (orange and yellow colors). To the con-
trary, some other species are predicted very well with all
the methods (blue colors). Except in SWI and NZ, most
high AUCROC species are species with less than 100 pres-
ence records in the training set. We will present details
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and discuss the main themes, of differing performance
across methods and regions, in the following sections.

Results averaged across all regions and species

Our results (Figs. 2, 3) show a gradient in perfor-
mance across methods. For ease of discussion, we cate-
gorized the modeling methods into three groups based
on both AUCROC and COR, using hierarchical cluster-
ing: (1) models with lower predictive performance, i.e.,
lower discrimination and lower correlation (left side of
Fig. 3); (2) models with moderate performance; and (3)
high-performance models with higher values for both

discrimination and correlation (upper right side of
Fig. 3). The Friedman’s Aligned Rank test rejected the
null hypothesis of “no difference between the perfor-
mance of the models” by a high level of significance, i.e.,
very small P values for all three evaluation metrics (sec-
tion 3 in Appendix S1). Therefore, we proceed with the
post hoc test to analyze the pairwise differences, and pre-
sent its adjusted P values in the next section.
Six of the 21 models are in the high-performance

group (BRT, RF down-sampled, MaxEnt, MaxEnt-
tuned, MaxNet, and Ensemble). Most models in the
moderate group have a mean AUCROC higher than 0.7,
indicating an average acceptable level of discrimination

FIG. 2. AUCROC values for all modeling methods across all species. Each circular track is the AUCROC of a model for all spe-
cies. Models and species are ordered by average AUCROC. The outer text labels indicate the regions. The numbers between NSW
and NZ regions label the modeling method as mentioned in middle of the figure. The height of the outer histogram shows the
log10(number of species presence-only records) in the training data set. Histogram colors follow three categories: light orange. <100;
pink, 100–1,000; and dark brown, >1,000 presences. This figure was created in Circos software (Krzywinski et al. 2009).
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on presence–absence data (Guisan et al. 2017). Variants
of the statistical models with smooth surfaces (GLMs,
GAMs) are all in the upper right section of this moder-
ate group, whereas a couple of tree-based models (cfor-
est and XGBoost) tended toward lower performance.
RF (with default settings) and SVM were the only two
methods classified as of low performance. Below we first
interrogate these new results, focusing on new methods
and interesting comparisons. We later compare results
for methods repeated from the NCEAS 2006 study.

New stand-out methods

Ensemble modeling (such as biomod) and RF are two
modeling methods prominent in recent SDM literature
for their reputation of achieving good predictive perfor-
mance (Marmion et al. 2009, Thuiller et al. 2009, Liu
et al. 2013, Zhang et al. 2019). While these techniques
are indeed the best performing modeling approaches in
our study, they only achieved this status under unusual
implementations. Often models are fitted following
default procedures. For instance, ensemble modeling is
typically done through packages such as biomod (Thuil-
ler et al. 2009, Hao et al. 2019). In our comparison, bio-
mod (with default parameters) performed not better
than average models such as GLM, whereas our selected
Ensemble model was the top-performing approach.
RF only performed well when using down-sampling

(RF down-sampled). This result is noteworthy, because

RFs are generally considered to be robust to the settings
used (Freeman et al. 2016, Probst et al. 2019) and often
shown to predict well (Liu et al. 2013, Beaumont et al.
2016). However, this is not always the case and clearly
must depend on what other models are in the compar-
ison, and on evaluation data. Shabani et al. (2016) com-
pared the performance of several presence-background
modeling methods on an independent data set and
reported a poor predictive performance of their RF
model. While our standard RF model performed poorly,
the use of down-sampling improved its performance dra-
matically, from the lowest performance in AUCROC

(0.648) to a place among the top performing models in
both AUCROC and COR metrics (0.730 and 0.216,
respectively; Fig. 3). The result of these implementations
of RF and ensemble have interesting nuances that we
will highlight in the “new insights to model fitting”
section.

Tree-based methods

Ensembles of trees are among the best performers
when well-tuned (BRT, RF down-sampled) but, despite
efforts to tune others well (XGBoost and cforest), per-
formance was not strong. BRT was one the best models
in the NCEAS 2006 study and is still among the top-
ranking models here, and not significantly different
from other models in this group (Fig. 4). XGBoost has
been successful in other disciplines (Chen and Guestrin

FIG. 3. Mean AUCROC vs. mean COR for the models, summarized across all species. The gray bars (around each model) are
standard errors estimated in a Bayesian mixed model, reflecting variation for an average species in an average region. The solid gray
line is the least-squares line fitted on the models. The dashed gray lines delimit regions of low-, moderate-, and high-performance
models, following the hierarchical clustering (represented in the top of the plot in Fig. 4). As a reminder, the ensemble model is the
average of Lasso, GAM, MaxEnt, BRT, and RF down-sampled.
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2016), but here was only a mid-level performer. In a
recent ecological example, Herdter (2019) modeled rela-
tionships between juvenile fish recruitment and environ-
ment for one species, and found XGBoost outperformed
GLM with stepwise selection. In contrast, most of our
GLMs (GLM-unweighted, IWLR-GLM, and Lasso)
outperformed XGBoost, although XGBoost was still
within one standard error of the GLM-unweighted and
IWLR-GLM models. XGBoost is a very flexible algo-
rithm, but needs intensive model tuning (Mu~noz-Mas
et al. 2019). While we attempted to tune our XGBoost
models by using a grid search over the model parame-
ters (Kuhn and Johnson 2013), we could not afford to
explore the full potential parameter space when model-
ing 225 species. XGBoost predictions could possibly

improve if all parameters were carefully tuned; this would
make an interesting further study. Furthermore, the
performance of XGBoost might be different when model-
ing presence–absence data. For instance, Mu~noz-Mas
et al. (2019) showed that a carefully tuned XGBoost fitted
to presence–absence data of invasive fish species per-
formed better than or equal to other tree-based models
such as BRT and RF. cforest and cforest-weighted
performed similarly, at the lower range of moderate
performers (Fig. 4). Both cforest models have much bet-
ter performance than RF (Figs. 3, 4), despite using simi-
lar settings (see Table 2). This could be due to the
fundamental differences in the tree types used in these
algorithms, where unlike RF, cforest does not grow very
deep trees.

FIG. 4. P values of the post-hoc of the Friedman Aligned Rank test with Shaffer adjustments for AUCROC for a null hypothesis
of no difference between pairs of models (values are rounded). The colors and the text inside each cell show different P values. Dar-
ker colors indicate higher P values (no significant difference in performance between models). The dendrogram on the top is based
on both AUCROC and COR that clusters models in three main groups. The height of each bar shows the relative difference between
each model/group.
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Regression-based methods

Some studies show that MaxEnt models perform bet-
ter if the regularization multiplier and feature types are
tuned (Muscarella et al. 2014, Radosavljevic and Ander-
son 2014). Here we tuned MaxEnt on the training data
using cross-validation (MaxEnt-tuned). MaxEnt-tuned
showed no statistically significant difference in perfor-
mance to the default MaxEnt model (Figs. 3, 4). Note
that the default MaxEnt settings were selected over 10
years ago based on performance on the presence–ab-
sence data in this same data set (Phillips and Dud�ık
2008), and this may be the reason that the tuned version
of MaxEnt did not perform better.
Since MaxEnt, MaxNet, and IWLR-GLM are so

closely related (Fithian and Hastie 2013, Renner and
Warton 2013, Phillips et al. 2017), one might expect
indistinguishable differences in performance. MaxEnt
and MaxNet models showed comparable performance
(Fig. 4, no evidence of statistical difference in AUCROC),
both notably stronger than the infinitely weighted logis-
tic regression (IWLR-GLM). This is likely because the
former models use a wide array of transformed features
instead of original variables, allowing more flexible non-
linear relationships. Our GLMs only allowed relatively
smooth models (linear and quadratic terms). This is evi-
dent when comparing a more flexible infinitely weighted
regression (IWLR-GAM) with MaxEnt and MaxNet
(no evidence of statistical difference in AUCROC;
adjusted P values in Fig. 4). The other pairs of methods
that might be expected to be close in performance are
Lasso and MaxNet, since MaxNet is using regularized
regression to fit its model (even using same underlying R
package as we used for Lasso here). Again, the perfor-
mance of MaxNet was higher, probably again because it
has more flexibility in fitted functions. Note that the
results discussed here are based on AUCROC; the pairs
of methods (MaxEnt/IWLR-GAM and MaxNet/Lasso)
are more separated by COR, with the first-named per-
forming better in each pair (Fig 3).
Comparing results for weighted versions of GLMs,

our results demonstrate a trend of slightly better perfor-
mance for regularization methods (Lasso, ridge regres-
sion) over stepwise GLM model selection (GLM,
IWLR-GLM) when assessed with AUCROC and COR
(Fig. 3), although these differences are not statistically
significant (Fig. 4). The infinite weighting (IWLR-
GLM) did not significantly improve the accuracy of
GLM-unweighted. They are within one standard error
in both AUCROC and COR (Fig. 3). However, IWLR-
GLM had slightly higher average AUCROC than GLM,
but lower COR. These differences were also not signifi-
cant (P values: 1 for AUCROC, 0.06 for COR; Fig. 4 and
Appendix S1: Fig. S3). The unweighted GLM achieved
higher AUCROC than GLM (down-weighted) but lower
in COR (Fig. 3) and TSS (Appendix S1: Fig. S9). This
is in line with the result by Barbet-Massin et al. (2012),
where they find that GLM with equal weight (named

down-weighted here) gets the best result when evaluated
with true skill statistics (Appendix S1: Fig. S9).

New insights to model fitting

The way one fits a model matters. We cannot cover the
details of model tuning and spatial prediction of all
models, rather we emphasize the importance of under-
standing the way models work and considering the nat-
ure of the data. Here we focus on three of the most
extreme examples from this current study that highlight
how simple modifications, grounded in theory, can make
a big difference to model performance. RF and SVM
models with default parameters performed poorly on
our presence-background data (Fig. 5), putting them as
the worst performing models. Background samples need
to be large to sample all environments (Renner et al.
2015), but this necessarily leads to a large disparity in
the number of presence records compared with the num-
ber of background records. This phenomenon (large dif-
ference in number of records between classes) is often
referred to as class imbalance. In SVM and RF, tech-
niques such as weighting are viewed as a way of address-
ing it. In our study, the performance of SVM improved
dramatically with weighting, as it did using down-
sampling for RF.
The sensitivity of RF to imbalanced data sets is often

attributed to the unequal representation of the classes
(here presence and background classes; He and Garcia
2009, Khalilia et al. 2011, Liu et al. 2013). However
other issues are also relevant, and one that is clearly at
play with presence-background data is that of class over-
lap, i.e., where the two classes sample similar environ-
mental conditions (Prati et al. 2004, Ali et al. 2015). We
explain and explore these issues in detail elsewhere
(Valavi et al. 2021), it is sufficient here to note that
presence-background data present unique challenges to
classification methods like RF, requiring adjustments to
how the models are fitted. Other ecologists have noticed
the sensitivity of RF to many background samples and
addressed it by using a very low number of background
points (Barbet-Massin et al. 2012, Liu et al. 2013). How-
ever, that approach leads to small samples of the back-
ground, which is far from ideal (Renner et al. 2015). For
imbalanced presence–absence data, previous studies
have demonstrated the improvement of RF predictions
using down-sampling techniques (Evans and Cushman
2009, Robinson et al. 2018, Shaeri Karimi et al. 2019).
Here, we used RF with and without down-sampling, and
the results clearly show the benefit of down-sampling
(Fig. 5).
SVM models have been shown to have poor perfor-

mance when the number of negative cases (background
samples here) heavily outnumber positives (presence
records here; Akbani et al. 2004). We believe that this is
also largely due to class overlap rather than different
representation of classes (see also Japkowicz and Ste-
phen 2002). SVM works by constructing a series of
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hyperplanes to separate data points based on their class.
The observations that lie very close to the decision
boundaries (hyperplanes) are called support vectors, and
affect their position. To maintain a good ability to gener-
alize, SVM allows some of the support vectors to end up
on the wrong side of the boundary, i.e., be misclassified
(James et al. 2013). In a default setting with equal mis-
classification costs, the plethora of overlapping back-
ground points pushes the decision boundary toward the
presence points (i.e., more misclassification of presences)
as the overall cost of misclassification of the small num-
ber of presences is much less than many background
samples (Akbani et al. 2004). By applying weights, we
greatly increase the cost of misclassification of the pres-
ence points so that the decision boundary is defined in
way that has a balanced misclassification over both pres-
ence and background classes. SVM improved substan-
tially by applying weights (Fig. 5).
Finally, the contrast in performance between the two

types of ensemble-across-methods is striking. Ensemble
modeling using software such as biomod is popular for
modeling species distributions (Hao et al. 2019). We
used biomod with default parameters since this is a com-
mon choice among modelers (Hao et al. 2019). In our
results, biomod with default parameters performed
worse than a number of single models, and ended up
roughly mid-field in performance (Figs. 5, 3). In con-
trast, ensembling a set of well-tuned models performed
relatively strongly (Ensemble model in Fig. 5). Many
modelers take default settings for granted and automati-
cally use them for modeling. Our results demonstrate
that ensembles per se are not effective (many single

models performed better than biomod) but ensembles of
well-tuned models can perform stronger than any of the
components.

Comparison with the previous studies

Since part of the intent of this paper is to provide a
reproducible benchmark for future comparisons, we
compare the current results with those in previous publi-
cations (Elith et al. 2006, Phillips et al. 2017). Fig. 6
shows all common models used across these studies, not-
ing that we could not always reproduce the way the
model fitting was done, giving previous use of software
no longer available.
Average performance for MaxEnt in Phillips et al.

(2017) was slightly better than for the present study
(Phillips et al. [2017] used MaxEnt v3.4.1, but we used
v3.4.4). This small difference could be attributed to the
different selection and number of random background
data, and/or a different approach to choosing the can-
didate sets of predictors (we used a subset,
Appendix S1: Table S1, whereas Phillips et al. [2017]
used all). It is unlikely that more background points
will detract from predictive performance (as evidenced
below for GLMs and GAMs; also in Fig. 1), so it is
likely due to the choice of predictor variables. This is an
interesting result and suggests that wider testing of pre-
dictor selection could be worthwhile. MaxEnt results
for the NCEAS 2006 study were slightly poorer again
(but still strong). In 2006 MaxEnt was relatively new,
lacking hinge features and the extensive tuning it now
has (Phillips and Dud�ık 2008). In addition, the default

FIG. 5. The difference between the performance of the default model with modified models in RF, SVM, and ensemble models.
Other methods are presented in gray for reference. Bars and lines as in Fig. 3.
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output is now slightly different (cloglog compared with
logistic; Phillips et al. 2017). BRT had a very similar
result in NCEAS 2006 and the present study. Similarly,
MARS (with no interaction) achieved a similar
AUCROC, however COR was very different. This is
likely because no weights were used during the MARS
model fitting in the present study, and a different pack-
age was used to implement MARS (earth in this paper
vs. mda in 2006).
Noticeably, the improvement in GAM for the cur-

rent study is substantial, putting it very close to the
MaxEnt result in NCEAS 2006 (one of the best mod-
els in that study; Fig. 6). Likewise, GLM performance
has improved compared to the NCEAS 2006. To
assess whether this improvement (in GLM and GAM)
is due to the different number/set of background
points or the newer implementation of these models,
we refitted both GLM and GAM with the same
10,000 background points from NCEAS 2006 and
then compared the result with the one reported on the
NCEAS 2006 and our current study (fitted also on
50,000 background samples).
The GLM with 10,000 background points in both

studies (present modeling and 2006) obtained identical
AUCROC with a slight change in the correlation. Increas-
ing the background points to 50,000, improved accuracy
only slightly (Table 3; Fig. 6). This shows that, averaged
over all species and regions, there is no measurable bene-
fit, but also no penalty to predictive performance, by

using larger background samples in this case. Although
the software used for modeling GLM in 2006 NCEAS
study was different from this study (the GRASP package
in S-PLUS vs. stats::glm in R), the implementation in
terms of model selection was quite similar and similar
covariates were used. On the other hand, focusing on the
results for 10,000 background points, GAM notably
improved in both correlation and discrimination since
2006. There is no measurable improvement in the perfor-
mance of the GAM model by increasing the number of
background points. The difference between years is likely
due to new software packages used of this model (mgcv
in R vs. the GRASP package in S-PLUS; see Elith et al.
[2006] for full details).

FIG. 6. Performance of models in NCEAS 2006, Phillips et al. (2017), and this study. For ease of comparison, this plot uses the
same axes ranges and division lines as Fig. 3. The dashed and solid gray lines separate the low-, moderate-, and high-performance
models, as in Fig. 3. The Phillips et al. (2017) models have no standard errors attached, as only their average performance was avail-
able to us. The MAXENTT from NCEAS 2006 study is a MaxEnt model with “threshold” feature (this feature is not included in
the other studies).

TABLE 3. Comparison of GLM (Generalized Linear Models)
and GAM (Generalized Additive Models) models with
10,000 and 50,000 background points to the results presented
in the NCEAS 2006 study.

Models Study/Modeling AUCROC COR

GLM present fitting, 50,000 background 0.705 0.179
GLM present fitting, 10,000 background 0.695 0.174
GLM NCEAS 2006, 10,000 background 0.695 0.177
GAM present fitting, 50,000 background 0.719 0.194
GAM present fitting, 10,000 background 0.719 0.195
GAM NCEAS 2006, 10,000 background 0.700 0.176

Note: All models have the same down-weighting scheme.
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Other approaches to evaluation: model ranks

So far, we assessed and compared the predictive per-
formance of the models by averaging their accuracy
measures (AUC and COR) across species. When using
averages, we can measure the size of the overall magni-
tude of difference in performance. However, we cannot
distinguish whether a modeling method might have a big
advantage for just a few species or a small advantage
over many species. Also, averaging is sensitive to outliers,
so failure in a few species may skew results. Since model
performance comparisons are done on just a sample of
species, with the hope that results generalize to other
species, one may prefer to choose a method that tends to
perform well on most species, rather than a method that
may be a lot better on only a few species, but worse in
most other cases. Accordingly, we can use average ranks
of models to summarize their performance across species
(Fig. 7). This approach is widespread in machine learn-
ing (Dem�sar 2006, Garc�ıa et al. 2010, Kull et al. 2019),
but rarely used in ecology. To implement this idea, we
calculated the rank of each model by sorting the accu-
racy of all models for each species, using the average
rank in case of ties (e.g., two models with the same
AUCROC).
The overall average ranks of AUCROC vs. COR

(Fig. 7A) shows a similar arrangement of the models to
the averages of original values (Fig. 3) with the top mod-
els showing a bigger advantage over the middle perform-
ing models (Fig. 7 vs. Fig. 3). For ease of comparison
with the previous graphs, we reversed the axis of the
average rank plots to have the best performing model on
the top right of the plot and the worst performing on the
lower left. The average ranking better reflects the P val-
ues in the post hoc Friedman’s Aligned Rank test as
they are both based on rank rather than absolute values.
One noticeable thing here is that, other than the high
performing models identified by clustering and shown in
Fig. 3, only GAM and SVM weighted have a better rank
than the mean ranks of both AUCROC and COR (rank
11, the upper right of the dotted lines).
We also show the average ranks of AUCROC vs.

AUCPRG in Fig. 7B. Across both panels, this figure
focuses on the discrimination power of the models as
both AUCs are a measure of discrimination but
AUCPRG (Fig. 7B) focuses more on presences. Ensemble
and RF down-sampled still show the best results in all
evaluation metrics (Fig. 7). BRT is the third best model
based on ranking AUCs, with a slightly better perfor-
mance than all variants of MaxEnt (Fig. 7B), although
this difference is not large and there is no evidence that
this difference is statistically significant (Fig. 4 and
Appendix S1: Fig. S2). IWLR-GAM, SVM weighted
and XGBoost are the only models other than the high-
ranking models (ensemble, RF down-sampled, BRT,
MaxEnts, and MaxNet), that have an average rank bet-
ter than the mean rank of all models (upper-right corner,
Fig. 7B). The infinitely weighted GAM (IWLR-GAM)

is ranked very close to MaxEnt and MaxNet, showing
its comparable discrimination power.
Similar to the previous results, RF and SVM with

default parameters are ranked the worst. Other than
these two models, MARS, GLM, cforests, biomod, and
regularized regressions are ranked lower than the mean
rank (Fig. 7B). Noticeably, GLM has a worse rank in
both AUCs compared to its point process weighted
counterpart, i.e., IWLR-GLM. Similarly, El-Gabbas
and Dormann (2017) found higher performance of
GLMs when applied with point process weighting (in
AUCROC and a threshold dependent metric). IWLR-
GAM also has a moderately better rank than (down-
weighted) GAM in AUCPRG, but less difference in
AUCROC. This result requires further exploration to
understand the links between scaling of the outputs and
the errors across presences and absences.

Best performing models per species

Here we continue with the rankings, but rather than
focusing on the average rank we focus on how frequently
a method is ranked top, in the top 2 or in the top 3 mod-
els for any given species. We order methods (left to right)
on overall performance (average AUCROC), to show how
these results compare with those discussed so far. Instead
of the average of ranks or values, we show the percentage
of species in the top 1 to 3 ranks. All methods performed
best (top 1) for at least a few species. While the ensembles
of our chosen five models (the Ensemble model) achieved
the highest overall performance, they were the best mod-
els (top one, Fig. 8) only for 3–5% of the species in both
AUCs and less than 2% for COR (Fig. 8). However,
among the top 3 models, they were second or third for
about one-quarter of species (25% in AUCROC, 21% in
AUCPRG and 20% for COR; Fig. 8) and the highest aver-
age rank among all (Fig. 7). This indicates that model
averaging might not be the best performer for all species,
but overall it performs well over many species.
Note that when measured by whether they are among

the top 1–3 models, ensembles of models fitted with
default settings (biomod, in this case) did not perform
particularly strongly, not better than a standard GLM.
Similar evidence is provided by Hao et al. (2020) when
comparing the performance of biomod ensembles to that
of individual models on 14 eucalypt tree species in New
South Wales, Australia. They applied the untuned bio-
mod ensemble and individual models in addition to tuned
BRT and found no evidence of superiority of the biomod
ensemble over the top-performing individual models.
RF with down-sampling achieved the best discrimina-

tion and correlation results in terms of being among the
top-ranked models, yielding the highest AUCROC,
AUCPRG, and COR for all three groups (top 1, 2, and 3 in
Fig. 8). Similarly, BRTand SVM weighted showed consis-
tent strong performance across all groups and evaluation
metrics. A particularly noticeable outcome is that the
order of the methods in Fig. 8 does not necessarily follow
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the order of the models by their average correlation and
discrimination, raw or ranked (in Figs. 3, 7). Specifically,
SVM weighted, with medium average AUCs (e.g., rank 11
in AUCROC) and correlation over all species, is the second
or fourth model in percentage of times it achieves top 1, 2,
or 3 rankings; its AUCROC puts it in the top 3 models for
40 species (20%). These results suggest that SVM weighted
does very well for some species but presumably quite
poorly for others (since its mean performance is not
strong; examples in row 8 of Fig. 2). Methods differ in
their abilities to model patterns in data (Merow et al.

2014). Depending on the underlying patterns in the data,
a very easy modeling task for one technique might be hard
for another. For instance, perfectly separable response
classes, which are problematic for GLMs (as the estimated
coefficient becomes infinite), are very easy for classifica-
tion trees (Strobl et al. 2009, James et al. 2013).
Conversely, MaxEnt, which was among the best per-

forming models for averaged accuracies (Fig. 3), did not
appear often in the top models, especially for the AUC
statistics. In other words, MaxEnt predicts strongly over-
all but is not necessarily the best model for many species.

FIG. 7. The average rank of AUCROC vs. (A) Pearson correlation between the predicted likelihood of presence and the pres-
ence–absence testing data (COR) and (B) area under the precision-recall gain curve (AUCPRG) for all the models. The gray dotted
lines are the mean ranks. The values of the x and y-axis are reversed to have the lowest rank (better models) on the top-right corner
and vice versa.
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This confirms that no one method is superior in all situ-
ations (Elith et al. 2006, Pearson et al. 2006, Miller
2010) and, depending on the species and the area of
study, some models might obtain a better result, despite
not being the best model overall (i.e., mean over all spe-
cies/locations). It also emphasizes the idea of consis-
tency: perhaps a more reliable method is one that
performs consistently well across all regions and species,
rather than one that happens to do well on some species
(see Fig. 7). Consistency is particularly important
because one does not know a priori whether the particu-
lar species and region being modeled at any moment in
time is likely to be well modeled or poorly modeled by a
method. Hence the methods to the far right of Fig. 8 are
a safer bet than those like SVM that perform well for a
few but poorly on average. Another way of looking at
this it to explore whether methods that show promise for
some (e.g., SVM) could be made more reliable with dif-
ferent implementations. It is often a good strategy to
evaluate the performance of several models to assess
which one is performing the best for a specific species.

Performance with very low occurrences

The AUCROC performance of the models for the spe-
cies with a low (<30) and moderate-high (≥30) number

of presences in the training set is presented in Fig. 9
(with 61 and 164 species in each group, respectively).
The threshold of 30 is chosen arbitrarily; we show
another threshold in Appendix S1: Fig. S1. This is a very
low number of occurrences for the models to capture
species distribution properly.
The difference between the low (<30) and high

(≥30) species presences is relatively larger for most of
the more complex models, e.g., cforest, XGBoost, and
SVM, though RF down-sampled is an exception. This
difference is smaller for the regression-based models.
This is expected as tree-based models are completely
data driven, so they need more data to accurately pre-
dict the distribution. Several examples can be seen in
Fig. 2. For instance, species 15 (from left) in the NZ
data set, with low number of presences, performed
poorly in all tree-based methods, but not in regression
methods. Regression models with parametric or semi-
parametric functions predict relatively better than
complex nonparametric models with lower number of
presences (James et al. 2013). Similarly, MaxEnt per-
forms relatively well, as MaxEnt by default controls
the complexity of the fitted functions according to the
number of presences, namely, linear is always used,
quadratic with at least 10 samples, hinge with at least
15, and product with at least 80 (Elith et al. 2011).

FIG. 8. The percentage of species for which a model was the top model or among the top two or three models. The models are
the sorted by overall average AUCROC from the left (lowest) to the right (highest). The gradient of colors reflects the percentages,
from yellow (low) to dark green (high).
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Regional performance

Fig. 10 shows AUCROC performance at the regional
level (see AUCPRG and COR plots in Appendix S1:
Fig. S8). Models for species in SWI and SA achieved the
highest AUCROC, followed by NZ, NSW, AWT, and
finally CAN. This is consistent with the result from the
2006 NCEAS study. The ranking is quite similar for
AUCPRG but different for COR, which is reasonable as
they measure different things. The low performance in
CAN is known to be due to the strong sampling bias in
this data set (see Fig. 4 in Philips et al. [2009]). With no
adjustment for a strong sampling bias, presence-
background models will model a combination of envi-
ronmental suitability and sampling intensity, as the two
cannot be untangled (Phillips et al. 2009, Fithian et al.
2015). The presence–absence test data are valuable
because they show what has been sampled, allowing a
well-informed evaluation of predictions.
The best overall-performing models also have good

performance in each region but not necessarily in the
same order (Fig. 10). For instance, XGBoost performed
almost as well as BRT (a top model) in SWI, RF down-
sampled had the highest AUCROC in SWI and SA. In
AWT, CAN, NSW, and NZ the highest AUCROC is
achieved by SVM-weighted, IWLR-GAM, ensemble,
GAM, and BRT, respectively. Both RF down-sampled
and ensemble performed consistently well in all three
evaluation metrics at this regional level (Fig. 10). It is
not surprising that the standard RF performs relatively
well on the SWI data since this region has the highest

number of presence points in our data sets (for presence-
only data: mean 1,170, range from 36 to 5,822; Elith
et al. 2020).

Spatial prediction

The statistics used for accuracy assessment (AUCROC,
AUCPRG, and COR) report the accuracy of the models
on the location of the evaluation points. Visual assess-
ments of the prediction maps are useful for checking
whether any of the models predict unlikely patterns. For
instance, when models are highly overfitted to the train-
ing data, the predicted map is extremely conservative
and results in predicting high likelihood/probabilities
only around the occurrence data. On the other hand, a
map with smooth variation in prediction could be a sign
of a simpler model (Merow et al. 2014). For so many
species, this visual assessment is not practicable, so
instead here we simply illustrate the mapped predictions
of several methods (Fig. 11) for one of the modeled spe-
cies from NZ with 101 occurrences spread over both
north and south islands (there was no preference on
choosing any species over others). In these maps, predic-
tions reflect the spatial pattern of training presence
points, with higher predictions generally aligning with
presence locations. The AUCROC of these models on this
species are 0.782, 0.793, 0.797, 0798, 0.805, 0.819, and
0.821 for SVM weighted, Lasso, GAM, RF down-
sampled, MaxEnt, BRT, and Ensemble, respectively.
AUCs simply report discrimination, testing whether the
models tend to predict higher at presence sites rather

FIG. 9. Mean and standard error of the AUCROC for the species with <30 and ≥30 presence points (with 61 and 164 species,
respectively). Models are arranged based on median AUCROC in their corresponding group: tree-based, regression, and others.
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FIG. 10. Mean AUCROC of each model per region. Models are sorted by overall AUCROC from lowest (left) to highest (right).
Regions are sorted by mean AUCROC across region, from highest (top) to lowest (bottom).

FIG. 11. Map of predicted relative likelihood of occurrence for the species nz30 in the NZ data set. The top-left figure shows
the occurrence data used for fitting the models. The colored histogram to the left of each map shows the distribution of predicted
values on all grid cells and the transparent gray histogram on top of it, demonstrates the distribution of predicted values on pres-
ence points (from testing data). The SVM weighted predicted values were very low, so its map is linearly rescaled between 0 and 1.
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than absence sites. The maps and histograms give more
insights into the spread of predictions both across the
range 0–1 (of all grid cells and testing presence sites),
and across the landscape.

Model-fitting computation time

Computation time is another important aspect of
modeling methods, often not reported in distribution
modeling studies (but see, e.g., Breiner et al. 2017 and
Ingram et al. 2020). Due to the high number of species
and models, we fitted the models on different machines.
Therefore, to obtain a fair comparison of the runtime of
the models, we fitted all models on five randomly chosen
species from each region (30 species in total; Fig. 12) in
a single platform: an online platform with 16 GB of allo-
cated memory and eight CPU cores (similar to a desktop
computer). Some methods are very similar regarding
their predictive performance, but their computational
costs are much different. For instance, RF down-
sampled, MaxEnt, and MaxNet achieved a remarkable
predictive performance in much shorter time than simi-
lar methods, e.g., Ensemble or BRT (Fig. 7). XGBoost
was the most computationally expensive model to fit in
this study, with more than 100 minutes per species on
average. This method with full parameter tuning takes
much longer (several hours based on our experience). In
contrast, RF down-sampled had an average of 6 s per

model fitting, making it the fastest model to fit. The
ensemble model, as our best model in all evaluation met-
rics, had an average of ~30 minutes per model fitting.
The regression methods were among the fastest models
with less than 2 minutes on average for model fitting (ex-
cept GAMs and Lasso). As a side note, prediction time
of all models are reasonably fast, except the cforest
model with a very slow prediction (even slower than
model-fitting time).

CONCLUSION AND PERSPECTIVES

There are numerous methods available for modeling
species geographic distributions using environmental
covariates. No single model is superior in all situations,
although some modeling approaches generally perform
better than others. Natural systems often show complex
and nonlinear relationships, autocorrelation and vari-
able interaction across spatial scales. Nonparametric
models often outperform traditional parametric models
in these situations (Evans and Cushman 2009). Our
results show that models capable of fitting complex func-
tions and interactions between covariates tend to obtain
higher overall performance when modeling species distri-
butions. BRT, MaxEnt, and RF have strategies to avoid
overfitting while they can have a fairly complex response.
These capabilities put them among the best performing
models in our comparison. It is possible that a GLM

FIG. 12. Model-fitting computation time for each method. Methods are arranged along the x-axis based on the median of times
(from short to long). The ensemble model runtime was calculated by summing the computation times for all its underlying models
(see Modeling methods). XGBoost and MARS models were run with multiple CPU cores in parallel (eight cores).
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with higher order polynomials and interactions than the
one we used here could achieve comparable results. On
the other hand, parametric and semi-parametric regres-
sion models (like GLM and GAM) can be a good choice
especially when the number of occurrences is very low,
when a complex and purely data-driven model might not
provide a reliable fit. Moreover, GLM and GAM are
useful when one wants to do multi-model inference
(Burnham and Anderson 2003), ensemble of small mod-
els (Breiner et al. 2017), and community models or joint
species-distribution models (Wilkinson et al. 2018, Nor-
berg et al. 2019, Ingram et al. 2020).
Presence-background data have the peculiarity of

being imbalanced, in that the proportion of background
points is much larger than the proportion of presence
records. This can be a difficult learning task for some
machine-learning methods. Here we introduced weight-
ing and down-sampling techniques for SVM and RF
models that led to a substantial improvement in their
prediction performance. Similarly, other weighting
approaches for regression models i.e., infinitely weighted
scheme, achieve better discrimination than the down-
weighting approach.
The modeling framework biomod is a popular plat-

form for ensemble modeling and most users take the
default settings for granted (Hao et al. 2019). We showed
that such settings can lead to suboptimal models, pro-
ducing only average performance. On the other hand,
ensembles of a selection of well-tuned models were the
best performing models overall.
Our analysis used independently collected data for

evaluating predictive performance of models. However,
this does not necessarily guarantee that training and
testing points are truly independent, and do not fall
close to each other (Bahn and McGill 2012). The closer
the points are, the more spatial dependence they have.
The lack of independence may favor some methods more
than others, particularly those methods that can fit more
complex relationships tighter to the data (James et al.
2013). To compare models with truly independent data
we would need spatially separated training and testing
data. A potential avenue of research in this direction
would be to test the predictive performance by account-
ing for the impact of spatial dependence, e.g., by using
block cross-validation techniques (Roberts et al. 2017,
Valavi et al. 2019).
Here we presented a comparison of a breadth of statis-

tical and machine-learning models commonly used for
species distribution modeling. In addition to specific
findings about the performance of alternative tech-
niques, our results emphasize the importance of thinking
about the characteristics of presence-background data
when choosing how to implement many methods. We fit-
ted all models in the free R programming language and
provide example code to facilitate their application to
other data sets. As the data we use are now also public
(Elith et al. 2020), our comparison is fully reproducible
and can serve as basis for future extensions.
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